E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql

TR RRRARAAAK AR AR AR AR A KA AR AR AR KK KKK KK KKK KKK O SK KK KK o KK o
2 CUNY ACE UPSKILLING: INTRODUCTION TO STRUCTURED QUERY LANGUAGE

3 SF21J0B#2, 2021/11/08 to 2021/12/13

4 https://folvera.commons.gc.cuny.edu/?cat=30

5 3k 3k 3k 3k sk sk sk 3k 5k sk sk 3k 3k ok Sk 3k 3k 3k Sk Sk 3k 3k sk Sk sk 3k ok sk sk 3k sk sk Sk sk 3k sk Sk sk 3k 3k sk Sk 3k 3k sk Sk sk 3k 3k sk Sk sk 3k sk Sk sk 3k 3k sk sk sk 3k sk sk sk >k ok sk sk sk ok sk sk sk kokok ke
6

7 SESSION #5 (2021/11/22): MANIPULATING DATA

8

9 1. Using clauses "BETWEEN", "NOT', "UNION , "EXCEPT and ~INTERSECT"
10 2. Understanding function “~FORMAT() for dates and currencies including
11 culture codes

12 sk ok ok ok ok koK ok o ok oK ok K ok ok oK koK ok o ok oK ok K ok o oK kK ok o oK oK ok oK ok o oK koK ok o ok oK ok K ok o oK koK ok o ok o oK ok K ok o oK R Kk R ok kK sk Kk kK

13
14 1. Before you continue learning about SQL

15 (https://searchsqlserver.techtarget.com/definition/SQL) syntax

16 (https://whatis.techtarget.com/definition/syntax), we should cover some

17 important theory, which you will need whether you need to learn SQL to run
18 queries at work and/or you decide to become a database administrator (DBA).
19

20 1.1. SQL (Structured Query Language) is a standardized programming language
21 used for managing relational databases and performing various

22 operations on the data in them. Initially created in the 1970s, SQL
23 is regularly used by database administrators, as well as by

24 developers writing data integration scripts and data analysts looking
25 to set up and run analytical queries.

26 https://searchsqlserver.techtarget.com/definition/SQL

27

28 1.2. ISO/IEC 9075-1:2016 [SQL:2016] describes the conceptual framework used
29 in other parts of ISO/IEC 9075 to specify the grammar of SQL and the
30 result of processing statements in that language by an

31 SQL-implementation.

32 ISO/IEC 9075-1:2016 also defines terms and notation used in the other
33 parts of ISO/IEC 9075.

34 https://www.iso.org/standard/63555.html

35

36 1.3. T-SQL (Transact-SQL) is a set of programming extensions from Sybase
37 and Microsoft that add several features to the Structured Query

38 Language (SQL), including transaction control, exception and error

39 handling, row processing and declared variables.

40 https://searchsqlserver.techtarget.com/definition/T-SQL

41

42 1.4. A relational database is a set of tables containing data fitted into
43 predefined categories. Each table (which is sometimes called a

a4 relation) contains one or more data categories in columns. Each row
45 contains a unique instance of data for the categories defined by the
46 columns.

a7 http://searchsqlserver.techtarget.com/definition/relational-database
48

49 1.5. Microsoft SQL Server is a relational database management system, or
50 RDBMS, that supports a wide variety of transaction processing,

51 business intelligence and analytics applications in corporate IT

52 environments. It's one of the three market-leading database

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

1.6.

1.7.

1.8.

1.9.

technologies, along with Oracle Database and IBM's DB2.

Like other RDBMS software, Microsoft SQL Server is built on top of
SQL, a standardized programming language that database administrators
(DBAs) and other IT professionals use to manage databases and query
the data they contain. SQL Server is tied to Transact-SQL (T-SQL), an
implementation of SQL from Microsoft that adds a set of proprietary
programming extensions to the standard language.

The original SQL Server code was developed in the 1980s by the former
Sybase Inc., which is now owned by SAP. Sybase initially built the
software to run on Unix systems and minicomputer platforms. It,
Microsoft and Ashton-Tate Corp., then the leading vendor of PC
databases, teamed up to produce the first version of what became
Microsoft SQL Server, designed for the 0S/2 operating system and
released in 1989.
https://searchsqlserver.techtarget.com/definition/SQL-Server

Another form of flat file is one in which table data is gathered in
lines of ASCII text with the value from each table cell separated by
a comma and each row represented with a new line. This type of flat
file is also known as a comma-separated values file (CSV) file.
http://searchsqglserver.techtarget.com/definition/flat-file

A hierarchical database is a design that uses a one-to-many
relationship for data elements. Hierarchical database models use a
tree structure that links a number of disparate elements to one
“owner, or “parent,’ primary record.
https://www.techopedia.com/definition/19782/hierarchical-database
Data Manipulation Language (DML) is the "~ “vocabulary used to retrieve
and work with data... to add, modify, query, or remove data "
(https://msdn.microsoft.com/en-us/library/ff848766.aspx).

1.8.1. SELECT to retrieve records from one or more tables
https://techonthenet.com/sql/select.php

1.8.2. INSERT to insert a one or more records into a table
https://techonthenet.com/sql/insert.php

1.8.3. UPDATE to update existing records in the tables
https://techonthenet.com/sql/update.php

1.8.4. DELETE to delete a one or more records from a table
https://techonthenet.com/sql/delete.php

1.8.5. MERGE to insert, update, or delete operations on a target
table based on the results of a join with a source
table

https://msdn.microsoft.com/en-us/library/bb510625.aspx
Data Definition Language (DDL) is the "~ “vocabulary used to define data
structures... to create, alter, or drop data structures™
(https://msdn.microsoft.com/en-us/library/ff848799.aspx).

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

1.9.1. USE to select any existing database in SQL schema [or
output from another query]
http://tutorialspoint.com/sql/sql-select-database.htm

1.9.2. CREATE to create and define a table [or other database
object]
https://techonthenet.com/sql/tables/create_table.php

1.9.3. ALTER to add a column, modify a column, drop a column,
rename a column or rename a table [or other database
object]

https://techonthenet.com/sql/tables/alter_table.php

1.9.4. DROP to remove or delete a table [or other database
object]
https://techonthenet.com/sql/tables/drop_table.php

1.9.5. TRUNCATE to remove all records from a table
https://techonthenet.com/sql/truncate.php

1.9.6. DELETE to delete a one or more records from a table
https://techonthenet.com/sql/delete.php

1.10. Note that some of these statements can do more than what is covered
in these notes for our first sessions.

For example, the "CREATE" statement is also used to create other
database objects as well as access management, but we will not cover
these other statements yet. Refer to
https://msdn.microsoft.com/en-us/library/cc879262.aspx for more
information on the “CREATE statement.

On a personal note, when looking for information and/or explanation
on how to use Microsoft technologies, in this case SQL Server, go to
https://techonthenet.com/ or http://tutorialspoint.com/ as
https://msdn.microsoft.com/ and other Microsoft websites often seem
to be written for advanced users.

We will use DML and DDL in detail later in the course.

. There are several data types

(https://msdn.microsoft.com/en-us/library/ms187752.aspx) that you need to
know if you are interested in taking the certification exam for Database
Fundamentals. 1In everyday use, these are the most often used data types in
T-SQL (http://searchsqlserver.techtarget.com/definition/T-SQL) -- the
version of SQL (http://searchsqlserver.techtarget.com/definition/SQL) used
in SQL Server (http://searchsqglserver.techtarget.com/definition/SQL-Server)
-- are the following.

2.1. INT -2731 (-2,147,483,648) to 2731-1 (2,147,483,647)
https://technet.microsoft.com/en-us/library/ms187745.aspx

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql

157
158
159
160
161
162
163
164
165
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

DECIMAL

VARCHAR(n)

DATE

TIME

DATETIME

MONEY

Conversion

fixed precision and scale numbers, 10738+1 through 10738-1

https://msdn.microsoft.com/en-us/library/ms187746.aspx

* instead of DOUBLE or FLOAT, indicating the whole value
followed by the number of decimals where pi(1,10) can
hold 3.1415926536, but not 3.14159265359 for eleven (11)
decimal spaces

2731-1 bytes (2 GB); variable-length, ASCII
(http://whatis.techtarget.com/definition/ASCII-American-
Standard-Code-for-Information-Interchange)

string data
https://technet.microsoft.com/en-us/library/ms176089.aspx
not to be confused with NVARCHAR(n) -- variable-length,
2731-1 bytes (2 GB), Unicode
(http://whatis.techtarget.com/definition/Unicode) string
data, not part of most relational database management
systems (RDBMS)
https://technet.microsoft.com/en-us/library/ms186939.aspx

date
https://technet.microsoft.com/en-us/library/bb630352.aspx

time
https://technet.microsoft.com/en-us/library/bb677243.aspx

defines a date that is combined with a time of day with
fractional seconds that is based on a 24-hour clock
https://technet.microsoft.com/en-us/library/ms187819.aspx

money, not part of most relational database management
systems (RDBMS)
https://technet.microsoft.com/en-us/library/ms179882.aspx

may only take place between data similar types.

B e T e +
| CONVERSION INPUT CONVERSION OUTPUT

B e T e +
| INT to DECIMAL | no loss; decimal spaces added

| (.00)

B e T e +

"
|
+
|
|
+
| DECIMAL to INT | possible loss of decimal spaces; |
| | truncated, value not rounded up |
| or down
o m e +
| DECIMAL to MONEY | truncated and rounded to four
| decimal spaces for mathematical
| calculations (.0000 to .9999);
| two decimal spaces shown for
|
+

cents (.00 to .99)

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

2.9.

| DATETIME to DATE | date only; time dropped
dmmmmmeme e o mmm e eeeceeeeeeeee————- +
| DATETIME to TIME | time only; date dropped
dmmmmmeme e o mmm e eeeceeeeeeeee————- +
| DATE to DATETIME | date with default value of |
| | ~©00:00.00.000°

dmmmmmeme e o mmm e eeeceeeeeeeee————- +
| TIME to DATETIME | time with default value of |
| | ~1900/01/01" |
dmmmmmeme e o mmm e eeeceeeeeeeee————- +
INT	converted to text; no longer
DECIMAL	numeric data and cannot be used
DATETIME to VARCHAR	in mathematical calculations
DATE NVARCHAR	
TIME	

dmmmmmeme e o mmm e eeeceeeeeeeee————- +
INT	straight conversion to proper
DECIMAL	data type as long as the string
VARCHAR to DATETIME	field only has numbers and
NVARCHAR DATE	structure is correct (for
TIME	example, text with value of
	~2019/03/11° to DATE); no

| | conversion if the string has |
| | letters or special characters |
dmmmmmeme e o mmm e eeeceeeeeeeee————- +
| VARCHAR to NVARCHAR| straight conversion; no data |
| | loss |
dmmmmmeme e o mmm e eeeceeeeeeeee————- +
NVARCHAR to VARCHAR	straight conversion if string is
	encoded as ACIII or UTF-8;
	possible data loss if string is
	encoded as Unicode or no

| | conversion at all |
dmmmmmeme e o mmm e eeeceeeeeeeee————- +

Refer to https://technet.microsoft.com/en-us/library/ms187912.aspx for
information on approximate numeric data types -- FLOAT and REAL. If
you are considering taking the certification, you should know the
concept below and why Microsoft recommends not using approximate
numeric data types.

""The float and real data types are known as approximate data
types. The behavior of float and real follows the IEEE 754
specification on approximate numeric data types. Approximate
numeric data types do not store the exact values specified for many
numbers; they store an extremely close approximation of the value.
For many applications, the tiny difference between the specified
value and the stored approximation is not noticeable. At times,
though, the difference becomes noticeable. Because of the
approximate nature of the float and real data types, do not use
these data types when exact numeric behavior is required, such as
in financial applications, in operations involving rounding, or in

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

equality checks. Instead, use the integer, decimal, money, or
smallmoney data types.

Avoid using float or real columns in WHERE clause search
conditions, especially the = and <> operators. It is best to limit
float and real columns to > or < comparisons. The IEEE 754
specification provides four rounding modes: round to nearest, round
up, round down, and round to zero. Microsoft SQL Server uses round
up. All are accurate to the guaranteed precision but can result in
slightly different floating-point values. Because the binary
representation of a floating-point number may use one of many legal
rounding schemes, it is impossible to reliably quantify a
floating-point value. "
https://technet.microsoft.com/en-us/library/ms187912.aspx

Note that FLOAT is commonly used in other relational database
management systems (RDBMS) like Oracle (http://oracle.com/) and in
most programming languages including those distributed by Microsoft.

3. As we start, we keep in mind that the most basic structure of a “SELECT"
statement (https://techonthenet.com/sql/select.php) is the following.

SELECT fieldl, field2...
FROM tablel

From the previous structure, you can add clauses in the following order.
If you organize the clauses any other order, the query will not work.

SELECT tablel.fieldl, -- 1. calling columns/fields
tablel.field2, -- (data)

table2.fieldl,
table2.field2,

table3.fieldl,
table3.field2,

FROM tablel -- 2. where to find data
-- (tables/views)
INNER|LEFT|RIGHT JOIN table2
ON tablel.shared_fieldl = table2.shared_fieldl
AND tablel.shared_field2 = table2.shared_field2

INNER|LEFT|RIGHT JOIN table3
ON tablel.shared_fieldl = table3.shared_fieldl
AND tablel.shared_field2 = table3.shared_field2

WHERE conditionl -- 3. filtering output, what
AND|OR condition2 -- rows/records you want to
AND|OR condition3 -- retrieve

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

GROUP BY tablel.fieldl, -- 4. grouping fields not in an
tablel.field2, -- aggregate function

table2.fieldl,
table2.field2,

table3.fieldl,
table3.field2,

ORDER BY -- 5. organizing rows/records
tablel.fieldl ASC|DESC, -- (output) in ascending
tablel.field2 ASC|DESC, -- (TASC”) or descending

ce -- (DESC") order
table2.fieldl ASC|DESC,
table2.field2 ASC|DESC,

table3.fieldl ASC|DESC,
table3.field2 ASC|DESC,

3. In the example below, we retrieve all (" *°) columns from table

“AP1.Vendors™ .
stk ook ok ok sk ok sk ok sk ok sk ok sk ok sk sk ok sk kst ok sk okskok ok sk ok sk ok sk kst ok sk kb ok sk stk skokskokok sk ok skoskokskokskokokskokskok -k /

SELECT *
FROM AP1.Vendors; -- retrieves all values from
-- table "AP1.Vendors®

[REFAKAAK AR AA KK KA A KA A A AAK A K A A A KA KA KA AR KA A KA KA HAKFK KKK KKK

3.1. The only time you can use “SELECT without "FROM™ is when you want the

machine to return a value, similar to “PRINT .
stk ok ok ok sk ok sk ok sk ks ok sk ok sk sk ok sk ok sk ok sk ks ok sk sk ok sk kst ok sk ok sk ok sk kst ok sk skt skokskokokskofskokokskokskok -k /

SELECT 9 * 8; -- returns integer 72 (a
-- mathematical equation)

SELECT 'Hello there'; -- returns string "Hello there’
-- (a simple string)

[RAEFAKAAKA AR AA KKK AK A KA KA A KK A A KA KA A KA KKK KKK AR H K KKK KKK

3.2. As you can see in the examples above, we are not retrieving data from

any table. You can get the same results using “PRINT .
stk ok ok ok kst ok sk ok sk ks ok sk sk sk sk ok sk ok sk ok sk ks ok sk sk ok sk kst ok sk ok sk ok sk kst ok skokskokokskokskokokskokskokokskokskok -k /

PRINT 9 * 8; -- prints integer 72 (a
-- mathematical equation)

PRINT 'Hello there'; -- prints string "Hello there’

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

-- (a simple string)

[RAEFAEAAKA A AK KA KA KK A A AR KA KA KK A A A KA KKK K KK KA KA H AR K KKK KKK

4. We have covered built-in functions that affect strings.

5.

4.1. CONCAT()

+
4.2. LEFT()
4.3. LEN()
4.4. LTRIM()
4.5. LOWER()

4.6. REPLACE()

4.7. RIGHT()

4.8. RTRIM()

4.9. SUBSTRING

4.10. UPPER()

Now we will see

5.1. AVG()

5.2. CEILING()

allows you to concatenate strings together
https://techonthenet.com/sql_server/functions/concat.php

allows you to concatenate 2 or more strings together
https://techonthenet.com/sql_server/functions/concat2.php

allows you to extract a substring from a string, starting
from the left-most character
https://techonthenet.com/sql_server/functions/left.php

returns the length of the specified string... does not
include trailing space characters at the end the string
when calculating the length
https://techonthenet.com/sql_server/functions/len.php

removes all space characters from the left-hand side of a
string
https://techonthenet.com/sql_server/functions/ltrim.php

converts all letters in the specified string to lowercase
https://techonthenet.com/sql_server/functions/lower.php

replaces a sequence of characters in a string with another
set of characters, not case-sensitive
https://techonthenet.com/sql_server/functions/replace.php

allows you to extract a substring from a string, starting
from the right-most character
https://techonthenet.com/sql_server/functions/right.php
removes all space characters from the right-hand side of a
string

https://techonthenet.com/sql_server/functions/rtrim.php

allows you to extract a substring from a string
https://techonthenet.com/sql_server/functions/substring.php

converts all letters in the specified string to uppercase
https://techonthenet.com/sql_server/functions/upper.php

functions used with numeric values.

returns the average value of an expression
https://techonthenet.com/sql_server/functions/avg.php

returns the smallest integer value that is greater than or

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

5.3. COUNT()
5.4. FLOOR()
5.5. MAX()
5.6. MIN()
5.7. RAND()
5.8. ROUND()
5.9. SUM()

6. In the examples
answer for each

equal to a number
https://techonthenet.com/sql_server/functions/ceiling.php

returns the count of an expression
https://techonthenet.com/sql_server/functions/count.php

returns the largest integer value that is equal to or less
than a number
https://techonthenet.com/sql_server/functions/floor.php

returns the maximum value of an expression
https://techonthenet.com/sql_server/functions/max.php

returns the minimum value of an expression
https://techonthenet.com/sql_server/functions/min.php

returns a random number or a random number within a range
https://techonthenet.com/sql_server/functions/rand.php

returns a number rounded to a certain number of decimal
places
https://techonthenet.com/sql_server/functions/round.php

returns the summed value of an expression
https://techonthenet.com/sql_server/functions/sum.php

below, we use each one of the numeric functions with the
on the comment on the right.

KKK KK O SKRSOK KK KKK SO oK SK KK S KKK SO SK KKK KKK OR K KRR KRk %

SELECT SUM(InvoiceTotal) AS InvoiceTotalSUM, --
AVG(InvoiceTotal) AS InvoiceTotalAVvG, --
COUNT(InvoiceTotal) AS InvoiceTotalCOUNT, --
ROUND(InvoiceTotal, 1) AS InvoiceTotalROUND, --

FLOOR(InvoiceTotal) AS InvoiceTotalFLOOR, --
CEILING(InvoiceTotal) AS InvoiceTotalCEILING, --
MAX(InvoiceTotal) AS InvoiceTotalMAX, --
MIN(InvoiceTotal) AS InvoiceTotalMIN, --

RAND(InvoiceTotal) AS InvoiceTotalRAND, --

FORMAT (InvoiceTotal, 'c',

AS InvoiceTotal,

FORMAT (InvoiceDueDate, 'd’,
AS InvoiceDueDate, --

214290.51
1879.7413

114

3813.30

40.20 ...

3813.00

40.00 ...

3814.00

41.00 ...

37966.19

6.00
0.713591993212924
0.713610626184182. ..
currency with
“en-us” (English US)
$3,813.33

$40.20 ...

“d” (lower case) for short
date returning no leading
zeros with culture “en-us’
(English US);

returns 1/8/2012

returns
returns
returns
returns

returns
returns

returns
returns
returns
‘en-us') -- "¢ for
culture
returns

‘en-us') --

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql

10

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

FORMAT (InvoiceDueDate,
AS InvoiceDueDate,

FORMAT (InvoiceDueDate,
AS InvoiceDueDate

FROM AP1.Invoices
GROUP BY InvoiceTotal,

'D', 'en-us')

"MM/dd/yyyy ",

AP1.Invoices.InvoiceDueDate

'en-us') --

1/10/2012 ...

D" (upper case) for long
date returning full day of
the week, full month, no
leading zeros with culture
“en-us” (English US);
returns

Sunday, January 8, 2012

Tuesday, January 10, 2012

custom date using format
"MM/dd/yyyy" which overrides
culture “en-us” (English
US); returns 01/08/2012
el1/1e/2012 ...

[RAEFAKAAK A KA KA KA KA KR AK AR AR KA A KA K A A KA KK AR A K KA A KA KA HAKFK KKK KKK

6.1.

When using an aggregate function, we must use "GROUP BY and list all

columns not in affected by any aggregate function.

In the example below, we retrieve "VendorState® plus the count of
column “VendorState™ for each “VendorState™ (" COUNT(VendorState)').

We can use "DISTINCT to make sure that duplicate values (rows) are
not included in the output of a query.

We can use "ORDER BY' to organize output by a specific column or list

of columns.

The default option for “ORDER BY' is ascending ("ASC), which can be

omitted (1, 2, 3...

a, b, c...).

The opposite option for “ORDER BY' is descending ("DESC"), which must

be used if needed (...3, 2, 1

...C, b, a)

R K KK KK O RSOK KK KKK O oK SK KK KKK SO SR SOK KK KKK OR K KRR KRk %/

SELECT DISTINCT
VendorState,

COUNT (VendorState)

FROM AP1.Vendors
GROUP BY VendorState

ORDER BY VendorState ASC;

1. to avoid duplicates

2. column not in aggregate
function

3. column in aggregate
function (calculation)

4. from table “AP1.Vendors®

5. must use “GROUP BY' when
using any aggregate
function, listing all
columns not in the
aggregate function

6. organizing results by

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql

11

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

-- column “VendorState™ in
-- ascending order

[RAEFAEAAKA A AK KA KA KK A A AR KA KA KK A A A KA KKK K KK KA KA H AR K KKK KKK

6.2. In the example below, we retrieve "VendorID" plus the sum of column

“PaymentTotal™ for each “VendorID (" SUM(PaymentTotal)).

R H K KKK ROK KK KKK O SR SK KK KKK SO SR SOK KK KKK OR KKK R KRk %

SELECT DISTINCT -- 1. to avoid duplicates
VendorID, -- 2. column not in aggregate
-- function
SUM(PaymentTotal) -- 3. column in aggregate
-- function (calculation)
FROM AP1.Invoices -- 4. from table “APl.Invoices”
GROUP BY VendorID -- 5. must use "GROUP BY" when

-- using any aggregate
-- function, listing all
-- columns not in the

-- aggregate function

ORDER BY VendorID DESC; -- 6. organizing results by

-- column “VendorID™ in
-- descending order

[REFAKAAK AR AA KKK AK A KA KA A KA K A A KA A AR KK KA KA KKK AK KKK KKK

7. In the example below, the query returns all values from the “APl.Vendors"
table with all related values from table "APl.Invoices’,
"APl.InvoicelLineItems™ and “AP1.Terms’ .

7.1. The relation between related tables “APl.Invoices’,

7.

7.

2.

3.

“AP1.InvoicelLineItems™ and “APl1.Terms™ is ~INNER JOIN since the value
(row ID) of one table in referenced in another.

Dollar amounts are formatted as “c¢° (currency) with culture “en-us’
(English-United States). Dates are formatted as “MM/dd/yyyy" (two
digits for month and day, four digits for year) and culture “en-us’
(English-United States). Refer to
https://msdn.microsoft.com/en-us/library/hh213506.aspx for more
information. Note that formatting a numeric value changes it to an
alpha-numeric value -- change in data type.

To include the average value of "InvoiceTotal® of all records from
table "APl.Invoices’, we use a sub-query (also referred to as nested
query, http://tutorialspoint.com/sql/sql-sub-queries.htm). We use
alias “AvgInvoiceTotal® to refer to this new column.

(
SELECT FORMAT(AVG(AP1.Invoices.InvoiceTotal),'c', 'en-us")

FROM AP1.Invoices

)
AS AvgInvoiceTotal

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql 12

572

573 There are various values for culture (one per language and country

574 combination). The following are just a few, probably the most common

575 in American businesses. Refer to

576 http://sql-server-helper.com/sql-server-2012/format-string-function- £
culture.aspx

577 for a more detailed list of cultures.

578

579 L Fommmm e R L LT +

580 | CULTURE | LANGUAGE | COUNTRY RESULT |

581 L Fommmm e R L LT +

582 | en-us | English | usa dollar

583 L Fommmm e R L LT +

584 | en-gb | English | Great Britain | pound

585 L Fommmm e R L LT +

586 | de-de | German | Germany euro

587 L Fommmm e R L LT +

588 | zh-cn | Simplified | china yuan

589 | | Chinese | |

590 L Fommmm e R L LT +

591 | jp-dp | Japanese | Japan yen

592 L Fommmm e R L LT +

593

594 Refer to https://www.iso.org/iso-4217-currency-codes.html for

595 more information on currency codes (ISO 4217).

596

597 When formatting DATETIME fields, you can use any of the formats below

598 and the culture (“en-us’). The default format in data type DATETIME

599 is “yyyy-MM-dd hh:mm:ss.nnnnnnn”. Refer to

600 https://docs.microsoft.com/en-us/sql/t-sql/functions/datename-transact- =
sql

601 for more information about dates.

602

603 L Fommmm e T +

604 | OPTION | ouTpuT | FORMAT |

605 L Fommmm e T +

606 | ¢ | currency | “¢, “en-us

607 | | depending on | |

608 | | culture (C$) | |

609 L Fommmm e T +

610 | d | day without | “d°, “en-us

611 | | leading zero, | |

612 | | day without | |

613 | | leading zero | |

614 | | and complete | |

615 | | year | |

616 | | (11/23/2021) | |

617 L Fommmm e T +

618 | D | whole day of | "D, “en-us

619 | | the week, | |

620 | | first letter | |

621 | | capitalized; | |

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql

622 | | whole month, | |
623 | | first letter | |
624 | | capitalized; | |
625 | | day without | |
626 | | leading zero | |
627 | | and complete | |
628 | | year (Monday, | |
629 | | November 22, | |
630 | | 2021) | |
631 L Fommmm e T +
632

633 L Fommmm e T +
634 | DATEPART | OUTPUT | FORMAT |
635 L Fommmm e T +
636 | dw | whole day of | “dw MMMM dd, yyyy

637 | | the week, | “dw MMMM d, yyyy"

638 | | first letter | “dw MMMM dd, yy’

639 | | capitalized | “dw MMMM d, yy’

640 | | (Monday) | |
641 L Fommmm e T +
642 | MMMM | whole month, | “MMMM dd, yyyy’

643 | | first letter | “MMMM d, yyyy' |
644 | | capitalized | “MMMM dd, yy’

645 | | (November) | “MMMM d, yy°

646 L Fommmm e T +
647 | MMM | month in | “MMM dd, yyyy®

648 | | abbreviation, | MMM d, yyyy’

649 | | first letter | MMM dd, yy° |
650 | | capitalized | MMM d, yy°

651 | | (Nov) | ~dd-MMM-yy" (default Oracle) |
652 | | | ~d-MMM-yy® (default Oracle) |
653 L Fommmm e T +
654 | MM | month number | ~MM/dd/yyyy"

655 | | with leading | ~MM/d/yyyy’

656 | | zero (11) | “MM/dd/yy® |
657 I I | “Mm/d/yy |
658 L Fommmm e T +
659 | ™ | month number | “M/dd/yyyy’

660 | | without | “M/d/yyyy”

661 | | leading zero | “M/dd/yy’ |
662 | | (22) | “m/d/yy

663 L Fommmm e T +
664 | dddd | day of week | “dddd, MMM d, yyyy’

665 | | (Monday) | ~dddd, MMMM d, yyyy"

666 L Fommmm e T +
667 | ddd | day of week | “ddd, MMM d, yyyy®

668 | | abbreviation } “ddd, MMMM d, yyyy’

669 | | (Mon) | |
670 L Fommmm e T +
671 | dd | day with | ~MM/dd/yyyy”

672 | | leading zero | “M/dd/yyyy’

673 | | (23) | “MM/dd/yy® |

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql

14

674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725

+
I
I
I
I
+
I
I
I
I
+
I
I
I
I
+
I
I
I
I
+
I
I
I
I
I
+
I
I
I
I
+
I
I
I
I
I
+
I
+
I
I
+
I
I
I
I
+

day without
leading zero
(23)

last two
digits of year
(21)

complete year
(2019)

+
I
I
I
I
+
I
I
I
I
+
I
I
I
I
+

24-hour, |

military time |

with leading |

zero (20) |

_______________ +
24-hour, |

military time |

without |

leading zero |

(20) I

_______________ +
12-hour |

(AM/PM), with |

leading zero |

(08 PM) |

_______________ +
12-hour |

(AM/PM), I

without |

leading zero |

(8 PM) I

+

I

I

I

+
six decimal |
spaces, |
fractions of |
a second |
+

“M/dd/yy’

_____________________________ N
TMM/d/yyyy” I
“M/d/yyyy” I
“MM/d/yy”

“M/d/yy” I
_____________________________ N
"M/dd/yy’

“M/d/yy” I
“MM/d/yy”

“M/d/yy” I
_____________________________ N
“M/dd/yyyy" I
“M/d/yyyy” I
TMM/d/yyyy” I
“M/d/yyyy” I
_____________________________ N

“HH:mm:ss® |
“H:mm:ss® |
“hh:mm:ss® |
“h:mm:ss® |

“HH:mm:ss.nnnnnnn" |
"H:mm:ss.nnnnnnn’ |
“hh:mm:ss.nnnnnnn” |
“h:mm:ss.nnnnnnn” |

Although we are using aggregate function “AVG() , we do not need to
use “GROUP BY' since the function is inside the sub-query.

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql 15

726
727

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776

Go to https://docs.microsoft.com/en-us/sql/t-sql/functions/format- ?

transact-sql

for more information on ~FORMAT() .

R H K KKK OK KK KKK O SK K SOK KK KKK SO SK K SOK KK KKK OR OK KRR KRk %/

SELECT DISTINCT AP1.Vendors.VendorlID,

AP1.Vendors.VendorName,
CONCAT (
AP1.Vendors.VendorAddressl,

[|
)

AP1.Vendors.VendorAddress2
) AS VendorAddress,
AP1.Vendors.VendorCity,
AP1.Vendors.VendorState,
CONCAT (
AP1.Vendors.VendorZipCode,
'-0000'
) AS VendorZipCode,
CONCAT (

(h

LEFT(AP1.Vendors.VendorPhone, 3),

DI

SUBSTRING(AP1.Vendors.VendorPhone,

)
RIGHT(AP1.Vendors.VendorPhone, 4)

) AS VendorPhone,
LTRIM(RTRIM(

CONCAT(AP1.Vendors.VendorContactLName,

))

AP1.Vendors.VendorContactFName))

) AS VendorContactName,

AP1.Vendors.DefaultAccountNo,
AP1.Invoices.InvoicelD,
AP1.Invoices.InvoiceNumber,

FORMAT(AP1.Invoices.InvoiceDate,

'"MM/dd/yyyy', ‘en-us")

AS InvoiceDate,

FORMAT (AP1.Invoices.InvoiceTotal,

'"MM/dd/yyyy', ‘en-us")

. concatenating

“VendorAddressl®, an
empty space and
“VendorAddress2®

as VendorAddress®

. concatenating

“VendorZipCode™ and a
dummy Plus4 as
VendorZipCode

. concatenating an opening

parenthesis, the first 3
characters of
“VendorPhone™ (area
code), corresponding
closing parenthesis with
a space, the substring
from ~VendorPhone®
starting with character 4
taking 3 characters
(branch exchange), a
hyphen and the 4 four
characters of
“VendorPhone”

(subscriber number) using
alias “VendorPhone®

. trimming the output of

the concatenation of
“VendorContactLName™, a
comma with a space and
“VendorContactFName®
using alias
“VendorContactName™

. formatting column as

"MM/dd/yyyy” (date) with
culture “en-us’ as
“InvoiceDate”

. formatting column as

"MM/dd/yyyy” (date) with
culture “en-us” the

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql

16

777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

AS InvoiceTotal, --

(
SELECT -- 7.
FORMAT (AVG(AP1.Invoices.InvoiceTotal), --
'c', 'en-us') --

FROM AP1.Invoices --

) AS AvgInvoiceTotal, --

FORMAT (AP1.Invoices.PaymentTotal, -- 8.
'c', 'en-us') --

AS PaymentTotal, --

FORMAT(AP1.Invoices.CreditTotal, -- 9.
'c', 'en-us') --

AS CreditTotal, --

FORMAT(AP1.Invoices.InvoiceDueDate, -- 10
'"MM/dd/yyyy', ‘en-us") --

AS InvoiceDueDate, --

FORMAT (AP1.Invoices.PaymentDate, -- 11

'"MM/dd/yyyy', ‘en-us") --
AS PaymentDate, --
AP1.InvoicelLineItems.InvoiceSequence,
AP1.InvoicelineItems.AccountNo,
FORMAT(AP1.InvoicelLineItems.InvoicelLineItemAmount,

“InvoiceTotal”

embedded query calling
“AVG(InvoiceTotal)®
formatted as "¢’
(currency) with culture
“en-us’

from all values in table

"AP1.Invoices” as
"AvgInvoiceTotal®
formatting column as "¢’
(currency) with culture
“en-us’ as PaymentTotal®
formatting column as "¢’
(currency) with culture

“en-us’ as “CreditTotal

. formatting column as

"MM/dd/yyyy” (date) with
culture “en-us’ as
“InvoiceDueDate”

. formatting column as

"MM/dd/yyyy” (date) with
culture “en-us’ as
“PaymentDate”

-- 12. formatting column as

c', 'en-us") --

AS InvoicelLineItemAmount, --
AP1.InvoicelLineItems.InvoicelineItemDescription,
AP1.Terms.TermsDescription,
AP1.Terms.TermsDueDays
FROM AP1.InvoicelLineItems

INNER JOIN AP1.Invoices --

"¢’ (currency) with
culture “en-us’ as
“InvoicelineItemAmount’

. from

“AP1l.InvoicelineItems”
using “~INNER JOIN" to
to connect to
"AP1l.Invoices™ to get
all shared values from

ON AP1.InvoicelLineItems.InvoiceID = AP1.Invoices.InvoiceID

INNER JOIN AP1.Terms --

ON AP1.Invoices.TermsID = APl.Terms.TermsID --

RIGHT JOIN AP1.Vendors --

"AP1l.InvoicelineItems”
and “AP1l.Invoices’
using “~INNER JOIN" to
connect to "APl.Terms’
to get all shared values
from
(TAP1.InvoicelLineItems”
and “AP1.Invoices) and
"AP1.Terms™ using
"RIGHT JOIN" to connect
to "APl1.Vendors® to get

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql 17

829 -- values from

830 -- "AP1.Vendors® and
831 -- related data from
832 ON AP1.Invoices.VendorID=AP1l.Vendors.VendorID -- (TAP1.InvoicelLineItems”
833 -- and “AP1l.Invoices and
834 -- “AP1.Terms™)

835 ORDER BY -- 14. ordering results by
836 AP1.Vendors.VendorName, -- “VendorName™ first and
837 AP1.Invoices.InvoicelD; -- then by "InvoicelID"
838

839

8A4Q /% eksckskskokstokokskokskokokskokskokok sk kst ok sk sk sk sk ok sk sk sk sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk sk sk sk ok sk sk sk ok sk ok sk ok ok sk ok ok ok
841 8. To get the difference between two dates, we use “DATEDIFF() , which

842 ““returns the difference between two date values, based on the interval
843 specified’ "~ (https://techonthenet.com/sql_server/functions/datediff.php).
844

845 We also call functions “DAY()"

846 (https://techonthenet.com/sql_server/functions/day.php), "MONTH()"

847 (https://techonthenet.com/sql_server/functions/month.php) and “YEAR()®
848 (https://techonthenet.com/sql_server/functions/year.php).

849

850 8.1. In the example below, we use "01/01/2017 as the starting date and
851 "11/22/2021° as the end date.

852 R H K KKK HOK KKK KKK SRS KKSOK KK S KKK SO SK KKK KK KR KKK R KRk %/

853
854 SELECT DATEDIFF(DAY,'01/01/2017','11/22/2021") AS DatediffDays, -- 1,786 days

855 DATEDIFF(MONTH, '01/01/2017",'11/22/2021") AS DatediffMonths, -- 58 months
856 DATEDIFF(YEAR, '01/01/2017"','11/22/2021") AS DatediffYears; -- 4 years
857

858

859 /% skekskskokokokstokokoskokskokok ook sk ok sk sk ok sk sk ks sk ok sk sk sk sk sk sk ks ok sk ks sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk ok ok
860 8.2. Instead of hard-coding today's date, we can use function “GETDATE()"
861 to retrieve the local system datetime.

862 R SK K KKK RS OK KKK KKK SO SKKSOK KK KK KO oK SOK KK KK KR KKK R KRk %
863

864 SELECT DATEDIFF(DAY, '©1/01/2017', GETDATE()) AS DatediffDays, -- 1,786 days
865 DATEDIFF(MONTH, '©1/01/2017', GETDATE()) AS DatediffMonths, -- 58 months
866 DATEDIFF(YEAR, '@1/01/2017', GETDATE()) AS DatediffYears; -- 4 years
867

868

8B /¥ HAFAKAAKAA KA KA AKA A KA KA A KA A KA K KA A KA KA AK A KA A KA KA K KA A A KA KA KA A KA KKK KK
870 9. LAB #4

871 Write a query without duplicate rows (SELECT DISTINCT)

872 9.1. to get all fields from “APl.Invoices’ and “APl.InvoicelinelItems™ to
873 retrieve shared data (T INNER JOIN) removing all duplicate columns

874 ("AP1l.Invoices.InvoiceID ™ or “APl.InvoicelLineItems.InvoiceID),

875 9.2. to format dates as "MMM d, yyyy (first three letters of the month,
876 the day without leading zeros and the full year)

877 9.3. and to format money ("c’) as “en-us” ("$7).

878 R K K KKK O SR OK KK KKK SRS SOK KK KKK SO SK KKK K KK KRR KKK R KRk %/

879
880 SELECT DISTINCT

E:\.etc\.BMCC\.ACE\.SQL\20211108.SF21J0B2\SF21J0B2_20211122.sql 18

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

AP1.Invoices.InvoicelD,

AP1.Invoices.InvoiceNumber,

FORMAT (AP1.Invoices.InvoiceDate,
'"MM/dd/yyyy', ‘en-us")

AS InvoiceDate,
FORMAT (AP1.Invoices.InvoiceTotal,
'"MM/dd/yyyy', ‘en-us")

AS InvoiceTotal,
(
SELECT
FORMAT (AVG(AP1.Invoices.InvoiceTotal),
'c', 'en-us')

FROM AP1.Invoices

) AS AvgInvoiceTotal,

FORMAT (AP1.Invoices.PaymentTotal,
'c', 'en-us')

AS PaymentTotal,

FORMAT(AP1.Invoices.CreditTotal,
'c', 'en-us')

AS CreditTotal,

FORMAT(AP1.Invoices.InvoiceDueDate,
'"MM/dd/yyyy', ‘en-us")

AS InvoiceDueDate,
FORMAT (AP1.Invoices.PaymentDate,
'"MM/dd/yyyy', ‘en-us")

AS PaymentDate,
AP1.InvoicelLineItems.InvoiceSequence,
AP1.InvoicelineItems.AccountNo,

FORMAT(AP1.InvoicelLineItems.InvoicelLineItemAmount,

'c', 'en-us')

AS InvoicelLineItemAmount,

AP1l.InvoicelLineItems.InvoicelineItemDescription
FROM AP1.Invoices
INNER JOIN AP1.InvoicelLineItems

. formatting column as

“MM/dd/yyyy” (date) with
culture “en-us’ as
“InvoiceDate”

. formatting column as

“MM/dd/yyyy” (date) with
culture “en-us’ as
“InvoiceTotal”

. embedded query calling

"AVG(InvoiceTotal)®
formatted as "¢’
(currency) with culture
“en-us’

from all values in table
"AP1l.Invoices as

"AvgInvoiceTotal®

. formatting column as "¢’

(currency) with culture
“en-us’ as PaymentTotal®

. formatting column as "¢’

(currency) with culture
“en-us’ as CreditTotal”

. formatting column as

"MM/dd/yyyy” (date) with
culture “en-us’ as
“InvoiceDueDate”

. formatting column as

“"MM/dd/yyyy” (date) with
culture “en-us’ as
“PaymentDate”

formatting column as "¢’
(currency) with culture
“en-us’ as

“InvoicelLineItemAmount”

. from "AP1l.Invoices™ using

“INNER JOIN® to connect
to "AP1.InvoicelLineItems’
to get all shared values

ON AP1.Invoices.InvoiceID = AP1.InvoicelLineItems.InvoiceID

in "APl.InvoicelLineItems”
and “AP1.Invoices’

/% Rokskskokstokokskok stk ok sk ok sk ok sk ok sk ok sk kst ok sk kst ok sk ok sk ok sk kst ok sk kst ok sk ok sk ok sk stk sk ok stk ok skof stk ok sk ok stk ok sk ok ok
https://folvera.commons.gc.cuny.edu/?p=1024 (2"10)

R K K KKK O SR OK KK KKK SRS SOK KK KKK SO SK KKK K KK KRR KKK R KRk %/

