...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230412.SQL

OLCoOoNOOTUVTDE WNBR

[ERNEY
P ®

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

[RAEFKAAKA KA KA KA KA KK AK AR A A A A A A KA KA K KKK HA A KKK HK KKK KKK

INTRODUCTION TO STRUCTURED QUERY LANGUAGE FOR DATA ANALYTICS
WS23SQL1001, 2023/04/03 to 2023/05/03

https://folvera.commons.gc.cuny.edu/?cat=33
sk sk 3k ok ok sk ok ok s ok ok ok ok sk ok ok sk sk ok sk sk ok ok s ok ok sk ok ok sk ok ok sk sk ok sk sk ok ok sk ok sk sk ok ok sk ok ok sk sk ok sk sk ok ok sk ok ok sk ok ok ok ok sk ok ok sk ok ok ok sk ok sk kok ok

SESSION #4 (2023/04/12): MANIPULATING DATA

1. Using built-in functions for numeric values including aggregate functions
and ~GROUP BY"
2. Using clauses "ORDER BY', "CASE', "WHERE® and operators

3. Sub-queries
sk sk sk ok sk sk ok ok sk ok ok ok ok sk ok ok sk sk ok sk sk ok ok s ok ok sk ok ok sk ok ok sk sk ok sk sk ok ok sk ok sk sk ok ok sk ok ok sk sk ok sk sk ok ok sk ok ok sk ok ok ok ok sk ok ok sk ok ok ok sk ok kR ok ok

1. LAB #2
Write a query without duplicate rows (SELECT DISTINCT)
1.01. to call all columns from “AP1l.Vendors™ and “APl.Invoices’, shared
data only (" INNER JOIN")

1.02. to present “VendorPhone™ in " (123) 456-7890° structure.
stk ok ok ok kst ok sk ok sk ok sk ok sk ok sk sk ok sk kst ok sk ok sk ok sk ok sk ok sk kst ok sk ok sk ok sk kst ok sk skt skokskoskokskokskokokskokokok -k /

SELECT DISTINCT -- 1. to retrieve unique rows

AP1.Vendors.VendorID,

AP1.Vendors.VendorName,

AP1.Vendors.VendorAddressi,

AP1.Vendors.VendorAddress2,

AP1.Vendors.VendorCity,

AP1.Vendors.VendorState,

AP1.Vendors.VendorZipCode,

REPLACE(-- 2. replacing " () -° from the
-- concatenation in #5
-- instead of a CASE clause
-- (logic block), which we
-- will cover later

CONCAT (-- 3. concatenating an opening
(" -- parenthesis, first three
LEFT(Vendors.VendorPhone, 3), -- characters of
D -- *VendorPhone™, a closing
SUBSTRING(Vendors.VendorPhone, 4, 3), -- parenthesis with a space,
-t -- the substring of
RIGHT (Vendors.VendorPhone, 4) -- “VendorPhone™ starting
), "() -", "') AS VendorPhone -- from the fourth character

-- and taking 3, a hyphen
-- and the last four
-- characters of
-- “VendorPhone™
AP1.Vendors.VendorContactLName,
AP1.Vendors.VendorContactFName,
AP1.Vendors.DefaultTermsID,
AP1.Vendors.DefaultAccountNo,
AP1.Invoices.InvoicelD,
-- AP1.Invoices.VendorID AS Exprl, -- 4. commenting out duplicate

...c\.ace\.SQL\20230403.WS23SQL1001\WS23SQL1001_20230412.SQL

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

AP1.
AP1.
AP1.
AP1.
AP1.
AP1.
AP1.
AP1.

Invoices.

Invoices

Invoices

Invoices

-- field “VendorID®
InvoiceNumber,

.InvoiceDate,
Invoices.
Invoices.
.CreditTotal,
Invoices.
Invoices.

InvoiceTotal,
PaymentTotal,

TermsID,
InvoiceDueDate,

.PaymentDate

FROM AP1.Vendors
INNER JOIN AP1.Invoices
ON AP1.Vendors.VendorID = APl.Invoices.VendorID;

[REFAKAAK A AK KA KA KKK AK AR AR KA KA KA K A A A KK KK A AR KK KA KA KA HAKF KKK KKK

As an alternative, we can use an alias for table.

v’ for “APl.Vendors®

i for “APl.Invoices”

R K KKK KKK KKK KK KKK O oK SK KK KKK SO SR SOK KK KKK K KRR KRk %

SELECT DISTINCT v.VendorID,

v.VendorName,
.VendorAddressi,
.VendorAddress2,
.VendorCity,
.VendorState,
.VendorZipCode,

< < < < <

REPLACE (CONCAT (

(

LEFT(v.VendorPhone, 3),

DI

SUBSTRING(v.VendorPhone, 4, 3),

RIGHT(v.VendorPhone, 4)

), O -

", ''") AS VendorPhone v.VendorContactLName,

v.VendorContactFName,
v.DefaultTermsID,
v.DefaultAccountNo,
i.InvoicelD,
-- i.VendorID AS Exprl,
i.InvoiceNumber,
i.InvoiceDate,
i.InvoiceTotal,
i.PaymentTotal,
i.CreditTotal,
i.TermsID,
i.InvoiceDueDate,

i.PaymentDate

FROM AP1.Vendors AS v
INNER JOIN AP1.Invoices AS i
ON v.VendorID = i.VendorID;

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230412.SQL

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155

[RAEFAEAAKA A AK KA KA KK A A AR KA KA KK A A A KA KKK K KK KA KA H AR K KKK KKK

2.

""In mathematical sets, the null set, also called the empty set, is the set
that does not contain anything. It is symbolized ® or { }. There is only
one null set. This is because there is logically only one way that a set
can contain nothing.
The null set makes it possible to explicitly define the results of
operations on certain sets that would otherwise not be explicitly
definable. The intersection of two disjoint sets (two sets that contain no
elements in common) is the null set. For example:
{1, 3, 5, 7, 9, ...}n{2, 4, 6, 8, 10, ...} =0 [n = U+2229]
[@ = U+2205]
The null set provides a foundation for building a formal theory of numbers.
In axiomatic mathematics, zero is defined as the cardinality of (that is,
the number of elements in) the null set. From this starting point,
mathematicians can build the set of natural numbers, and from there, the
sets of integers and rational numbers.” "
http://whatis.techtarget.com/definition/null-set

As such, NULL refers to a memory allocation with no value -- not an empty
space since the latter has a value of “CHAR(32) .

Note that concatenating any VARCHAR (ANSI-complaint accepting ASCII,
UTF-8) or NVARCHAR (Microsoft proprietary data type, not ANSI-complaint
accepting ASCII, UTF-8 and especially Unicode) field to a NULL (no value,
not a blank character) field using "+ instead of using the ~CONCAT()"
function will return NULL.

In the example below, we lose data when concatenating “VendorAddressl®
and “VendorAddress2®™ in the “APl.Vendors™ table when using "+ .

"“An aggregate function performs a calculation on a set of values, and
returns a single value. Except for COUNT, aggregate functions ignore null
values. Aggregate functions are often used with the GROUP BY clause of the
SELECT statement.
https://docs.microsoft.com/en-us/sql/t-sql/functions/aggregate-functions-
transact-sql

3.01. In the example below, we search for the count of records from table
"AP1.Vendors™ where column “VendorState® has a value of "NY and
"NJT. Since a field (a single data allocation) cannot have two
values at the same time, the query returns no values.

R KK O ROK KK KKK O oK SOK KK KKK SO SR SOK KK KKK ORK KRR KRk %

SELECT COUNT(VendorState) AS CountVendorState

FROM AP1.Vendors

WHERE VendorState
AND VendorState

I I
= =
=z 34
\-c- -

-- returns @ (zero)

[REFKAAK AR AA KKK AK AR KA A KK KA KA KA A A KA K KA KKK KKK AR HK KK KKK

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230412.SQL

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

3.02. In the example below, we search for the count of records from table
"AP1.Vendors® where column “VendorState has a value of "NY' or "NJ.

In other words, the field can have either value.
stk ook ok ok sk ok sk ok sk ok sk ok sk ok sk sk ok sk kst ok sk ok sk ok sk ok sk ok sk kst ok sk ok sk ok sk sk ok sk otk sk ok skokokskofskokokskokskok -k /

SELECT COUNT(VendorState) AS CountVendorState
FROM AP1.Vendors
WHERE VendorState = 'NJ'
OR VendorState = 'NY'; -- returns 7 (4 "NJ° & 3 "NY)

[REFAKAAK A AK KA KA KKK AK AR AR KA KA KA K A A A KK KK A AR KK KA KA KA HAKF KKK KKK

3.03. In the example below, we search for the count of records from table
"AP1.Vendors® with "DISTINCT® values in column "VendorState™ -- in

other words, the number of unique states.
stk ok ok ok ok ok sk ok sk ok sk ok sk ok sk ok sk sk ok sk kst ok sk ok ok sk sk ok sk kst ok sk ok sk ok sk ok stk sk ok stk sk ok skoskokskofskokokskokskok -k /

SELECT COUNT(DISTINCT VendorState) AS CountVendorState
FROM AP1.Vendors; -- returns 22

[REFAKAAK AR AA KK R AK A KA KA A KK A A A KK KK A KA K KKK A KK HAKFK KK KKK

3.04. In the example below, we search for the count of records from table
"AP1.Vendors . We can use “*° (read as " “all ") since we are looking

for the number of all values -- in other words, of all records.
stk ook ok ok sk ok sk ok sk ok sk ok sk ok sk sk ok sk kst ok sk okskok ok sk ok sk ok sk kst ok sk kb ok sk stk skokskokok sk ok skoskokskokskokokskokskok -k /

SELECT COUNT(*) AS CountOfRows
FROM AP1.Vendors; -- returns 114

[REFAKAAK AR AA KK KA A KA A A AAK A K A A A KA KA KA AR KA A KA KA HAKFK KKK KKK

3.05. In the examples below, we retrieve the sum of values in column
“InvoiceTotal® ("SUM(InvoiceTotal)), average value of column
“InvoiceTotal® (TAVG(InvoiceTotal)), maximum value of column
“InvoiceTotal® ("MAX(InvoiceTotal)) and minimum value of column
“InvoiceTotal® ("MIN(InvoiceTotal)) from table “APl.Invoices™.

Note that these values do not have commas as dividers (1,000) or
currency symbols. If you need to include dividers, you would need to
use the “FORMAT() function.

Also note that there is no need to use GROUP BY since all fields (in
this case the same field, "InvoiceTotal’) below are subject to

aggregate functions.
stk ok ok ok kst ok sk ok sk ks ok sk sk sk sk ok sk ok sk ok sk ks ok sk sk ok sk kst ok sk ok sk ok sk kst ok skokskokokskokskokokskokskokokskokskok -k /

SELECT SUM(InvoiceTotal) AS InvoiceTotalSUM, -- 1. returns 214290.51
AVG(InvoiceTotal) AS InvoiceTotalAVG, -- 2. returns 1879.7413
MAX(InvoiceTotal) AS InvoiceTotalMAX, -- 3. returns 37966.19
MIN(InvoiceTotal) AS InvoiceTotalMIN -- 4. returns 6.00

FROM AP1l.Invoices;

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230412.SQL

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

-- 5.

no need for “GROUP BY"
since all fields are
affected by aggregate
functions

[RAEFAKAAKA AR AA KK KA A KA KA A KA K A A AR KK AR KK A KA KKK AKFK KKK KKK

If we need to use the "FORMAT() function, we have to this after the
aggregate function since the value is still numeric at this point.
Once we format the number, the value is converted to a string, which

can no longer be used for any math operation.
stk ok ok ok ok ok sk ok sk ok sk ks ok sk ok sk kst ok sk sk ok sk ok sk ok sk ok sk ok sk sk ok sk ok sk ok sk kst ok sk otk skokskoskokskofskoskok sk okskok -k /

SELECT FORMAT(SUM(InvoiceTotal),

AS InvoiceTotalSUM,

FORMAT (AVG(InvoiceTotal),

AS InvoiceTotalAVG,

FORMAT (MAX(InvoiceTotal),

AS InvoiceTotalMAX,

FORMAT (MIN(InvoiceTotal),

AS InvoiceTotalMIN

FROM AP1l.Invoices;

e

'c

C

)

)

)

c,

‘en-us')

‘en-us")

‘en-us")

‘en-us")

-- 1. value formatted as

currency ("c’) with
culture “en-us’
(English-US);
$214,290.51

returns

. value formatted as

currency ("c’) with
culture “en-us’
(English-US);
$1,879.7413

returns

. value formatted as

currency ("c’) with
culture “en-us’
(English-US);
$37,966.19

returns

. value formatted as

currency ("c’) with
culture “en-us’
(English-US);
$6.00

returns

. no need for “GROUP BY"

since all fields are
affected by aggregate
functions

[RAEFAKAAKA AR AA KKK AK A KA KA A KK A A KA KA A KA KKK KKK AR H K KKK KKK

3.06. In the examples below, we search for the sum, average, maximum and
“InvoiceTotal™ from table “AP1.Invoices’

respectively as (nested queries) sub-queries.
stk ok ok ok kst ok sk ok sk ks ok sk sk sk sk ok sk ok sk ok sk ks ok sk sk ok sk kst ok sk ok sk ok sk kst ok skokskokokskokskokokskokskokokskokskok -k /

minimum value of column

SELECT InvoicelD,
VendorID,
InvoiceNumber,
InvoiceDate,
InvoiceTotal,

(

-- 1. beginning of nested query

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230412.SQL

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

SELECT
MAX(InvoiceTotal)

FROM AP1.Invoices

) AS InvoiceTotalMAX,

(
SELECT

MIN(InvoiceTotal)
FROM AP1.Invoices
) AS InvoiceTotalMIN,

ROUND

(

(
SELECT

AVG(InvoiceTotal)

FROM AP1.Invoices

)s
2)

AS InvoiceTotalAVG,

PaymentTotal,
CreditTotal,
TermsID,
InvoiceDueDate,
PaymentDate
FROM AP1.Invoices
ORDER BY VendorID,
InvoiceTotal;

between parenthesis to
get "MAX(InvoiceTotal)"
from table “AP1.Invoices”
with alias
“InvoiceTotalMAX™ for
nested query

. beginning of nested query

between parenthesis to
get "MIN(InvoiceTotal)"
from table “AP1l.Invoices”
with alias
“InvoiceTotalMIN® for
nested query
rounding value of the sub
query to 2 decimal spaces
3.1. beginning of nested
query between
parenthesis to get
"AVG(InvoiceTotal)®
from table
"AP1.Invoices’
3.2. rounding the value
the nested query to
2 decimal spaces

. with alias

“InvoiceTotalAVG™ for
nested query & “ROUND()"

[RAEFAEAAK A AK KA A KKK AK A KA KA A KA K A A A KA KA A KA K KKK A KKK AR FK KKK KKK

3.07. When using aggregate functions, we need to use "GROUP BY . Otherwise

we would get the following error.

""Msg 8120, Level 16, State 1, Line 2

Column

“AP1.Invoices.InvoiceID”

is invalid in the select

list because it is not contained in either an aggregate

function or the GROUP BY clause.

When using "GROUP BY , we need to list each column that we are
calling (from “InvoiceID™ to "PaymentDate) not affected by the

aggregate function.

Note that “AVG(InvoiceTotal) returns the same value as
"InvoiceTotal™ since the average only affects a single value

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230412.SQL

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

(" InvoiceTotal™) within a single row.

R SH K KKK OK KK KKK O SR SOK KK KK KO KKK KK KR KKK R KRk %

SELECT InvoicelD,

VendorID,
InvoiceNumber,
InvoiceDate,
InvoiceTotal,

AVG(InvoiceTotal) AS InvoiceTotalAVvG,

PaymentTotal,
CreditTotal,
TermsID,
InvoiceDueDate,
PaymentDate

FROM AP1.Invoices
GROUP BY

InvoicelD,
VendorID,
InvoiceNumber,
InvoiceDate,
InvoiceTotal,
PaymentTotal,
CreditTotal,
TermsID,
InvoiceDueDate,
PaymentDate

ORDER BY VendorID,

InvoiceTotal;

https://folvera.commons.gc.cuny.edu/?p=1219

. aggregate function

"AVG()" only affecting
field "InvoiceTotal® and
returning the average of
the value per line

. must use “GROUP BY"

because of the aggregate
function; all fields not
affected by any aggregate
function to be listed;

no exceptions to this
rule

"ORDER BY™ placed after
“GROUP BY ; no exceptions
to this rule

[RAEFAKAAK A KA KA KA KKK AK A KA A A AR A A A AR KK AR KKK KKK AKF K KKK KKK

R K KK KK O RSOK KK KKK O oK SK KK KKK SO SR SOK KK KKK OR K KRR KRk %/

