...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230419.SQL

OLCoOoNOOTUVTDE WNBR

[ERNEY
P ®

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

[RAEFKAAKA KA KA KA KA KK AK AR A A A A A A KA KA K KKK HA A KKK HK KKK KKK

INTRODUCTION TO STRUCTURED QUERY LANGUAGE FOR DATA ANALYTICS
WS23SQL1001, 2023/04/03 to 2023/05/03

https://folvera.commons.gc.cuny.edu/?cat=33
sk sk 3k ok ok sk ok ok s ok ok ok ok sk ok ok sk sk ok sk sk ok ok s ok ok sk ok ok sk ok ok sk sk ok sk sk ok ok sk ok sk sk ok ok sk ok ok sk sk ok sk sk ok ok sk ok ok sk ok ok ok ok sk ok ok sk ok ok ok sk ok sk kok ok

SESSION #6 (2023/04/19): CREATING DATABASE OBJECTS

1. Understanding data types

2. Creating, dropping and altering databases, schemata, tables and columns
3. Inserting values into tables and updating values

4. Differences between "DROP", "TRUNCATE and "DELETE"

*

sk ok ok ok ok koK ok o ok oK ok K ok ok oK koK ok o ok 3k oK ok K ok o oK koK ok o oK oK ok K ok o ok koK ok o ok oK kK ok o oK koK ok o ok o oK kK ok o oK R Kk R ok R Kk Kk kK

1. LAB #4

Write a query without duplicate rows (SELECT DISTINCT)

1.01. to get all fields from "APl.Invoices™ and “APl.InvoicelineItems to
retrieve shared data (T INNER JOIN") removing all duplicate columns
("APl.Invoices.InvoiceID ™ and “APl.InvoicelLineItems.InvoiceID"),

1.02. to format dates as "MMM d, yyyy (first three letters of the month,
the day without leading zeros and the full year)

1.03. and to format money (c’) as “en-us’ ("$).
stk sk ok ok sk ok sk ok sk ok sk ok sk ok sk sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk kst ok sk ok sk ok sk skt sk ok stk sk ok skoskokskofskokokskokskok -k /

SELECT DISTINCT
AP1.Invoices.InvoicelD,
AP1.Invoices.InvoiceNumber,

FORMAT (AP1.Invoices.InvoiceDate, --

'"MM/dd/yyyy', 'en-us")

AS InvoiceDate,
FORMAT (AP1.Invoices.InvoiceTotal,
'"MM/dd/yyyy', 'en-us")

AS InvoiceTotal,
(
SELECT
FORMAT (AVG(AP1.Invoices.InvoiceTotal),
'c', 'en-us')

FROM AP1.Invoices

) AS AvglInvoiceTotal,

FORMAT (AP1.Invoices.PaymentTotal,
'c', 'en-us')

AS PaymentTotal,

FORMAT(AP1.Invoices.CreditTotal,
'c', 'en-us')

AS CreditTotal,

FORMAT(AP1.Invoices.InvoiceDueDate,
'"MM/dd/yyyy', 'en-us")

. formatting column as

"MM/dd/yyyy” (date) with
culture “en-us’ as
“InvoiceDate”

. formatting column as

"MM/dd/yyyy” (date) with
culture “en-us’ as
“InvoiceTotal”

. embedded query calling

“AVG(InvoiceTotal)®
formatted as "¢’
(currency) with culture
“en-us’

from all values in table
"AP1.Invoices ™ as

“AvgInvoiceTotal®

. formatting column as "¢’

(currency) with culture
“en-us’ as PaymentTotal®

. formatting column as "¢’

(currency) with culture
“en-us’ as CreditTotal®

. formatting column as

"MM/dd/yyyy” (date) with

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230419.SQL

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

-- culture “en-us’ as
AS InvoiceDueDate, -- “InvoiceDueDate”
FORMAT (AP1.Invoices.PaymentDate, -- 7. formatting column as
'"MM/dd/yyyy', 'en-us") -- "MM/dd/yyyy” (date) with
-- culture “en-us’ as
AS PaymentDate, -- “PaymentDate”
AP1.InvoicelLineItems.InvoiceSequence,
AP1.InvoicelineItems.AccountNo,
FORMAT(AP1.InvoicelLineItems.InvoicelLineItemAmount,
'c', 'en-us') -- 8. formatting column as "¢’
-- (currency) with culture
-- ‘en-us’ as
AS InvoicelLineItemAmount, -- “InvoicelineItemAmount’
AP1l.InvoicelLineItems.InvoicelineItemDescription
FROM AP1.Invoices -- 9. from "AP1.Invoices using
INNER JOIN AP1.InvoicelineItems -- “INNER JOIN® to connect
-- to "AP1.InvoicelinelItems”
-- to get all shared values
ON AP1.Invoices.InvoiceID = AP1l.InvoicelineItems.InvoiceID
-- in “APl.InvoicelineItems’
-- and “AP1l.Invoices’
/% Rokokskokstokokskok stk ok sk ok sk ok sk kst ok sk kst ok sk kst ok sk kst ok sk kst ok sk ok sk ok skok stk ok sk kst ok sk ok stk ok sk ok stk ok sk ok stk ok sk ok ok

2. As a review, we understand that the most common joins we will use are the
following.

2.01.

2.02.

| LEFT Hmmmmm e AR —— +
| JoIN | INNER | |
| | JOIN | RIGHT |
N Hmmmmm e + JOIN |

“INNER JOIN" calls the data shared in both tables. The data must be
present in both table. All other data is ignored.

"LEFT JOIN® calls in the left table (called first) plus any related
data found in the right table (second table). This means that the
right table does not need to have corresponding data. In other
words, if the right table does not have related data, nothing is
returned (NULLs at the beginning of the dataset output).

As such, we can ask for all data in “APl.Vendors™ (main), not
necessarily from “APl.Invoices™ (secondary). In this example, we are
interested in all "AP1.Vendors™ regardless of possible corresponding
data in "APl.Invoices . In other words, some vendors might not have
sales.

R SH KK KKK O ROK KK KKK O SR SOK KK KKK SO SR SOK KK KKK KKK R KRk %

SELECT *

104 FROM AP1.Vendors -- 1. main table called first

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230419.SQL

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

-- (left)
LEFT JOIN AP1l.Invoices -- 2. secondary table called
-- second (right), always in
-- groups of two (2) tables
ON AP1.Vendors.VendorID = APl.Invoices.VendorID;

[RAEFAKAAKA AR AA KKK AK AR AR KA A KK A A A KA KA AR K KA KA KA HAKF KKK KKK

2.03. "RIGHT JOIN" calls in the right table (called second) plus any
related data found in the left table (first table). This means that
the left table does not need to have corresponding data. 1In other
words, if the left table does not have related data, nothing is
returned (NULLs at the end of the dataset output).

As such, we can ask for all data in “APl.Invoices™ (main), not
necessarily from ~APl.Vendors™ (secondary). In this example, we are
interested in all "APl.Invoices™ regardless of possible corresponding
data in "APl.Vendors . In other words, some invoices might not have

vendor data.
stk ok ok ok kst ok sk ok sk ok sk ok sk ok sk sk ok sk kst ok sk ok sk ok sk ok sk ok sk kst ok sk ok sk ok sk kst ok sk skt skokskoskokskokskokokskokokok -k /

SELECT *

FROM AP1.Vendors -- 1. secondary table called
-- first (left)

RIGHT JOIN AP1.Invoices -- 2. main table called second

-- (right), always in groups
-- of two (2) tables
ON AP1.Vendors.VendorID = APl.Invoices.VendorID;

[REFAKAAK AR AA KK R AK A KA KA A KA K A A AR A KK A KA KKK KKK AKFK KK KKK

2.04. On a personal note, "RIGHT JOIN" is a disorganized way to write code.
The example above could easily be called using “LEFT JOIN" ordering
the tables more appropriately. Note that the order of “VendorID"
coming from “APl.Invoices’ and "APl.Vendors.VendorID™ makes no

difference.
stk ok ok ok sk ok sk ok sk ok sk ok sk ok sk sk ok sk kst ok sk sk ok sk ok sk ok sk kst ok sk ok sk ok sk kst ok skokskokokskokskoskokskofskokokskokskok -k /

SELECT *

FROM AP1.Invoices -- 1. main table called first
-- (left)

LEFT JOIN AP1.Vendors -- 2. secondary table called

-- second (right), always in
-- groups of two (2) tables
ON AP1.Invoices.VendorID = AP1l.Vendors.VendorID;

[RAEFKAAK A AK KA KA KK R AK AR AR KA A KK A A KA KK A KA KA KA KKK AK K KKK KK

3. Now that we understand most common data types, we can start creating data
objects (DATABASE, TABLE, etc.) and populating tables with data.

3.01. Note that no two objects of the same hierarchy can share the same

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230419.SQL 4

157 name, for example a TABLE and a VIEW.

158

159 3.02. The following is a quick view of database hierarchy.

160

161 SERVER: ~"A server is a computer program that provides a

162 | service to another computer programs (and its user).

163 | In a data center, the physical computer that a server

164 | program runs in is also frequently referred to as a

165 | server. That machine may be a dedicated server or

166 | it may be used for other purposes as well. "

167 | https://whatis.techtarget.com/definition/server

168 |

169 +- DATABASE: " "A database is a collection of information

170 | that is organized so that it can be easily

171 | accessed, managed and updated.

172 | Data is organized into rows, columns and tables,

173 | and it is indexed to make it easier to find

174 | relevant information. Data gets updated,

175 | expanded and deleted as new information is added.

176 | Databases process workloads to create and update

177 | themselves, querying the data they contain and

178 | running applications against it. ~

179 | https://searchsqlserver.techtarget.com/definition/ =
database

180 |

181 +- SCHEMA: °~"1) In computer programming, a schema

182 | (pronounced SKEE-mah) is the organization or

183 | structure for a database. The activity of

184 | data modeling leads to a schema. (The plural

185 | form is schemata. The term is from a Greek

186 | word for " “form™ " or "~ "figure. " Another

187 | word from the same source is "~ schematic. ")

188 | The term is used in discussing both

189 | relational databases and object-oriented

190 | databases. The term sometimes seems to refer

191 | to a visualization of a structure and

192 | sometimes to a formal text-oriented

193 | description.

194 | Two common types of database schemata are the

195 | star schema and the snowflake schema.

196 | 2) In another usage derived from mathematics,

197 | a schema is a formal expression of an

198 | inference rule for artificial intelligence

199 | (AI) computing. The expression is a

200 | generalized axiom in which specific values or

201 | cases are substituted for each symbol in the

202 | axiom to derive a specific inference. "

203 | https://searchsqlserver.techtarget.com/ £
definition/schema

204 |

205 +- TABLES: "~ "In computer programming, a table is

206 | | a data structure used to organize

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230419.SQL

207 | | information, just as it is on paper.’’

208 | | https://whatis.techtarget.com/definition/
table

209 | |

210 | +- COLUMNS (FIELDS): ~"A field is an area in

211 | | a fixed or known location in a unit of

212 | | data such as a record, message header, or

213 | | computer instruction that has a purpose

214 | | and usually a fixed size. 1In some

215 | | contexts, a field can be subdivided into

216 | | smaller fields.

217 | | https://searchoracle.techtarget.com/
definition/field

218

219 PRIMARY KEY (PRIMARY KEYWORD): ~"A primary

220 key, also called a primary keyword, is a

221 key in a relational database that is

|
| +-
||
||
222 | | unique for each record. It is a unique
223 | | identifier, such as a driver license
||
||
||
||
||
||

224 number, telephone number (including area
225 code), or vehicle identification number
226 (VIN). A relational database must always
227 have one and only one primary key.

228 Primary keys typically appear as columns
229 in relational database tables.

230 | | https://searchsqlserver.techtarget.com/
definition/primary-key

231 |

232 +- FOREIGN KEY: ~"A foreign key is a column
233 or columns of data in one table that

234 connects to the primary key data in the
235 original table. To ensure the links

236 between foreign key and primary key

I
I
I
I
I
I
237 | tables aren't broken, foreign key
I
I
I
I
I

238 constraints can be created to prevent

239 actions that would damage the links

240 between tables and prevent erroneous data

241 from being added to the foreign key

242 column.™

243 | https://searchoracle.techtarget.com/
definition/foreign-key

244 |

245 +- VIEWS: "~ "In a database management system, a

246 | view is a way of portraying information in

247 | the database.™"

248 | https://whatis.techtarget.com/search/query

249 |

250 +- STRUCTURED (MODULAR) PROGRAMMING:

-
251 | “*Structured programming (sometimes known
I
I
I

252 as modular programming) is a subset of
253 procedural programming that enforces a
254 logical structure on the program being

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230419.SQL

255
256
257
258
259
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

286
287
288
289
290
291
292
293
294

295
296
297
298
299
300
301
302

written to make it more efficient and
easier to understand and modify. Certain
languages such as Ada, Pascal, and dBASE
are designed with features that encourage
or enforce a logical program structure.
https://

searchsoftwarequality.techtarget.com/definition/structured-
programming-modular-programming

+- FUNCTIONS: "~ "In information technology,

function

the term function (pronounced FUHNK-shun)
has a number of meanings. It's taken
from the Latin "~ functio™ ™ -- to perform.
1) In its most general use, a function is
what a given entity does in being what it
is.

2) In C language and other programming, a
function is a named procedure that
performs a distinct service. The
language statement that requests the
function is called a function call.
Programming languages usually come with a
compiler and a set of " “canned "
functions that a programmer can specify
by writing language statements. These
provided functions are sometimes referred
to as library routines. Some functions
are self-sufficient and can return
results to the requesting program without
help. Other functions need to make
requests of the operating system in order
to perform their work. "
https://whatis.techtarget.com/definition/

+- PROCEDURES: " "A stored procedure is a set

of Structured Query Language (SQL)
statements with an assigned name, which
are stored in a relational database
management system as a group, so it can
be reused and shared by multiple
programs. "
https://searchoracle.techtarget.com/

definition/stored-procedure

4. Now that you have a better understanding of data types, we can start

creating objects.
CREATE obj_type

CREATE DATABASE

obj_name [some_code]

db_name;

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230419.SQL

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

CREATE SCHEMA ace;

CREATE SCHEMA schema_name;
CREATE TABLE schema_name.table_name
(

field 1 datatype_ 1 [attributes],
field 2 datatype 2 [attributes],
field 3 datatype_ 3 [attributes],

);...

CREATE VIEW schema_name.view_table
AS
(
SELECT fields...
FROM table(s)

)s

As you can see, the syntax to create objects is similar regardless of the
object type.

4.01. In the example below, we create database "labs’.
stk sk ok ok sk ok sk ok sk ok sk ok sk ok sk sk ok sk ok sk ok sk ok sk ok sk ok sk ok sk kst ok sk ok sk ok sk skt sk ok stk sk ok skoskokskofskokokskokskok -k /

CREATE DATABASE 1labs;

[REFAKAAK AR AA KK R AK A KA KA A KA K A A AR A KK A KA KKK KKK AKFK KK KKK

4.02. We then create schema “ace’, which must be called to be used when
creating tables or other objects.

There is no need to call the name of the schema when using the SQL
Server default schema “dbo™ (database owner) -- not used in this

R K KK KKK HOK KKK KKK O SR SOK KK KKK SO SK KKK KKK OR K KRR KRk %

[RAEFAEAAK A AK KA A KKK AK A KA KA A KA K A A A KA KA A KA K KKK A KKK AR FK KKK KKK

4.03. After creating the database (and the schema if needed), we can create
the table.

CREATE TABLE table_name

(
fieldl data type [null|not null] [unique] [primary key],

field2 data type [null|not null],

)

R SH KK KKK O ROK KK KKK O SR SOK KK KKK SO SR SOK KK KKK KKK R KRk %

CREATE TABLE ace.students (-- 1. rule of thumb: table

-- names in plural

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230419.SQL

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

student_id INT NULL,

student_fname VARCHAR(50) NULL,

student_lname VARCHAR(50) NULL,

student_phone VARCHAR(15) NULL,

student_dob DATE NULL,

record_date DATE NULL

)s

-- 2.

declared as INT; can
accept NULL (can have no
value)

. declared as VARCHAR(59);

can accept NULL (can have
no value)

. declared as VARCHAR(59);

can accept NULL (can have
no value)

. declared as VARCHAR(59);

can accept NULL (can have
no value)

. declared as DATE

DATETIME ©4/20/2023 20:51
DATE 04/20/2023
TIME 20:51

can accept NULL (can have
no value)

. declared as DATE; when

record was created; can
accept NULL (can have no
value)

[REFAKAAK AR AA KK R AK A KA KA A KA K A A AR A KK A KA KKK KKK AKFK KK KKK

4.04. After creating table "students™ in schema “ace’, we insert values for
each column in the same order as the structure that we indicated in

#4.03.

If we do not have a value for a specific field, we can push an empty

string or NULL.

R K KK KKK HOK KKK KKK O SR SOK KK KKK SO SK KKK KKK OR K KRR KRk %

INSERT INTO ace.students
VALUES (
1,
'Joe’,
'Smith',
'555-123-4567",
'1980/05/01",
GETDATE()

)

(

2,

'Mary',
'Jones’,
'212-555-1000",
'1983/05/16",

-- 1.

built-in function to
retrieve system DATETIME

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230419.SQL

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

GETDATE()

)

(

3,

'Peter’,

'Johnson’,

NULL, -- 2. inserting empty strings
-- (") or NULL since we
-- have no values for fields
-- to insert same number of
-- values as columns

'06/01/1980",

GETDATE()

)

[REFAKAAK A AK KA KA KKK AK AR AR KA KA KA K A A A KK KK A AR KK KA KA KA HAKF KKK KKK

4.05. In the example below, we insert only three (3) values.

We call the the three (3) corresponding columns to indicate which
value goes where.

We do not need to call columns in order as long order as long as
values are pushed in the same order (value 1 in field 1, value 2 in

field 2, value 3 in field 3 and value 7 in field 7).
stk ook ok ok sk ok sk ok sk ok sk ok sk ok sk sk ok sk kst ok sk okskok ok sk ok sk ok sk kst ok sk kb ok sk stk skokskokok sk ok skoskokskokskokokskokskok -k /

INSERT INTO ace.students (

student_id, -- 1. inserting values to only
student_fname, -- four (4) columns;
student_lname, -- indicating which four (4)
record_date -- columns
)

VALUES (
4, -- 2. values to be inserted in
'Smith', -- columns " student_id’,
"Tom', -- “student_fname’,
GETDATE() -- “student_lname® and
) -- “record_date’ receiving

-- value from ~GETDATE()"

[RAEFAKAAKA AR AA KKK AK A KA KA A KK A A KA KA A KA KKK KKK AR H K KKK KKK

4.06. In the example below, we insert row 6 before 5.

The values in "“student_id" (the row identifier) are unique, but they
do not need to be in order.

If you need to insert values in “student_id"® automatically in
incremental order, you would need to use “IDENTITY(1,1)" as part of
the table structure. The first integer indicates that the first
value as one. The second integer indicates that the value is

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230419.SQL 10

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

incremented by one.

https://www.w3schools.com/sql/sql_autoincrement.asp for more

information.

CREATE TABLE ace.students (
student_id INT NOT NULL IDENTITY(1, 1) PRIMARY KEY,
student_fname VARCHAR(50) NULL,
student_lname VARCHAR(50) NULL,
student_phone VARCHAR(15) NULL,
student_dob DATE NULL,
record_date DATE NULL

R SK K KKK OK KK KKK O oK SOK KK KKK SO SR SOK KK KKK KKK KRk %

INSERT INTO ace.students

VALUES (
6,
'John',
'Scott’,

v
)

v
)

GETDATE()

)
(
5,
'Mary Ann',
'Saunders’,

v
)

v
)

GETDATE()

)s

. inserting empty strings

(") or NULL since we
have no values for fields
to insert same number of
values as columns

. built-in function to

retrieve system DATETIME

. inserting empty strings

(") or NULL since we
have no values for fields
to insert same number of
values as columns

. built-in function to

retrieve system DATETIME

[RAEFAKAAKA AR AA KKK AK A KA KA A KK A A KA KA A KA KKK KKK AR H K KKK KKK

5. We can also delete/destroy data objects.

For the time being, we will work with tables

(https://techonthenet.com/sql_server/tables/drop_table.php).

Once an object is deleted, there is no way to rescue the data (ROLLBACK)

unless first creating a SAVEPOINT

(https://technet.microsoft.com/en-us/library/ms178157.aspx).

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230419.SQL

11

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

5.01. In the example below, we destroy ("DROP") table “ace.students”
understanding that, once we do, we cannot recover the structure or

the data.
stk ook ok ok sk ok sk ok sk ok sk ok sk ok sk sk ok sk kst ok sk ok sk ok sk ok sk ok sk kst ok sk ok sk ok sk sk ok sk otk sk ok skokokskofskokokskokskok -k /

DROP TABLE ace.students;

/% Rskokskoksrokokskok stk ok sk ok sk ok sk kst ok sk kst ok sk ok sk sk ok sk kst ok sk kst ok sk kst ok sk ok sk ok sk kst ok sk ok sk ok skof stk ok sk ok stk ok ok ok ok
5.2. In the case of tables, we can destroy (" TRUNCATE) the data in the

table without affecting the structure of the table understanding that,

once we do, we cannot recover the data.
stk sk ok ok ok kst ok sk ok sk ks ok sk ok sk sk ok sk ok sk ok sk kb ok sk sk ok sk kst ok sk ok sk ok sk ok skokok sk ok stk sk ok skoskokskofskokokskokskok -k /

TRUNCATE TABLE ace.students;

/% Rokokskoksrokokskok stk ok sk ok sk ok sk kst ok sk kst ok sk kst ok sk kst ok sk kst ok sk kst ok sk ok stk ok sk kst ok sk ok stk ok sk ok sk ok sk ok sk ok ok ok ok
6. We can also modify (TALTER™) data objects. We will start modifying tables

(https://techonthenet.com/sql_server/tables/alter_table.php) since you
might do this more often.

ADD to add a column to a table
DROP to delete a column to a table
ALTER to change the data type or size of a column

KKK KK O SKRSOK KK KKK SO oK SK KK S KKK SO SK KKK KKK OR K KRR KRk %

ALTER TABLE ace.students -- 1. adding new column

ADD Email VARCHAR(1090); -- “Email’; no need to
-- specify that you are
-- adding a column

ALTER TABLE ace.students -- 2. dropping (deleting)

DROP COLUMN Email; -- column “Email’ as there
-- is no SQL statement to
-- rename data objects;
-- must specify that you are
-- dropping a column

ALTER TABLE ace.students -- 3. adding new (replacement)

ADD student_email VARCHAR(109); -- column ~student_email’;
-- no need to specify that
-- you are adding a column

ALTER TABLE ace.students -- 4. altering column with new
ALTER COLUMN student_email VARCHAR(50) NULL; -- data type VARCHAR(50)
-- from VARCHAR(100) and
-- "NOT NULL™; must specify
-- that you are altering a
-- column

...c\.ace\.SQL\20230403.WS23SQL1001\WS23SQL1001_20230419.

SQL

12

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614

ALTER
ALTER

ALTER
ALTER

ALTER
ALTER

ALTER
ALTER

ALTER
ALTER

ALTER
ALTER

ALTER
ALTER

TABLE ace.students --
COLUMN student_id INT NOT NULL; --

TABLE ace.students --
COLUMN record_date DATETIME NOT NULL; --

TABLE ace.students --
COLUMN student_fname VARCHAR(25) NOT NULL;--

TABLE ace.students --
COLUMN student_fname VARCHAR(25) NOT NULL;--

TABLE ace.students --
COLUMN student_id VARCHAR(5); --

TABLE ace.students --
COLUMN student_id INT NOT NULL; --

TABLE ace.students --
COLUMN student_fname FLOAT; --

10.

11.

. altering column as

"NOT NULL™; must specify
that you are altering a
column

. altering column with new

data type DATETIME
from DATE and “NOT NULL";
must specify that you are
altering a column

. altering column with new

data type VARCHAR(25)
from VARCHAR(50) and

"NOT NULL™; must specify
that you are altering a
column

. altering column with new

data type VARCHAR(25)
from VARCHAR(50) and

"NOT NULL™; must specify
that you are altering a
column

. altering column with new

data type VARCHAR(5) from
INT; no error during
conversion; must specify
that you are altering a
column

altering column back to
data type INT from
VARCHAR(5); no error
during conversion; must
specify that you are
altering a column

trying to alter column
to data type FLOAT from
VARCHAR(25); conversion
failure due to format
incompatibility (letters
to numbers)

[RAEFKAAK A AK KA KA KK R AK AR AR KA A KK A A KA KK A KA KA KA KKK AK K KKK KK

7. We can use "UPDATE ™ to write new values into an existing row.

7.01. In the example below, we UPDATE the value of column " student_phone”

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230419.SQL 13

615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

passing value “No Number® where there is no value ("IS NULL) or

there is an empty space ()
stk ook ok ok sk ok sk ok sk ok sk ok sk ok sk sk ok sk kst ok sk ok sk ok sk ok sk ok sk kst ok sk ok sk ok sk sk ok sk otk sk ok skokokskofskokokskokskok -k /

UPDATE ace.students
SET student_phone = 'No Number'’
WHERE student_phone IS NULL

OR student_phone = ;

[RAEFKAAKAA KA KA KA KK A AR AR KA A KA K A A A KA KA KA KA KKK KKK AR K KK KKK

7.02. In the example below, we UPDATE the value of column "~student_email”
passing the value of the concatenation of "~student_fname™ and
“student_lname® with a period (.) between the two columns -- for
example, "~ john.smith@example.foo ™ for ~student_fname™ with value of

“John® and " student_lname® with value of “Smith’.
stk sk ok ok ok kst ok sk ok sk ks ok sk ok sk sk ok sk ok sk ok sk kst ok sk sk ok sk kst ok sk ok sk ok sk otk sk skt sk ok skoskokskofskokokskokskok -k /

UPDATE ace.students
SET student_email = LOWER(CONCAT (
student_fname,

o
)

student_lname,
'@example.foo’

))s

[REFAKAAK AR AA KK R AK A KA KA A KA K A A AR A KK A KA KKK KKK AKFK KK KKK

7.03. In the example below, we UPDATE column "record_date’ where the field

is NULL or has an empty space (°°) with value from ~GETDATE() .
stk ook ok ok kst ok sk ok sk ok sk ok sk ok sk sk ok sk kst ok sk sk ok sk sk ok sk kst ok sk ok sk ok sk ok stk sk ok stk sk ok skokokskokskokokskokokok -k /

UPDATE ace.students
SET record_date = GETDATE()
WHERE record_date IS NULL

OR record_date = ;

/% Rskokskok okt skok stk ok skok sk ok sk kst ok sk kst ok sk kst ok sk ok sk ok sk kst ok sk kst ok sk ok stk ok sk kst ok sk ok stk ok skof stk sk ok stk ok ok ok ok
7.04. In the example below, we can UPDATE " student_dob™ to "1980/01/23"
where “student_id® is "1°.
stk ok ok ok kst ok sk ok sk ks ok sk sk sk sk ok sk ok sk ok sk ks ok sk sk ok sk kst ok sk ok sk ok sk kst ok skokskokokskokskokokskokskokokskokskok -k /

UPDATE ace.students
SET student_dob = '1980/01/23"'
WHERE student_id = 1;

[RAEFKAAK A AK KA KA KK R AK AR AR KA A KK A A KA KK A KA KA KA KKK AK K KKK KK

8. In the example below, we use "~TRUNCATE to delete all data from table

“ace.students’ without dropping (destroying) the table.
stk ok ok ok kst ok sk ok sk ok sk ok sk sk sk sk ok sk sk ok sk okskok ok sk ok sk ok sk kst ok sk ok sk ok sk ok skokok sk koot sk ok skokokskokskokokskokskok -k /

...c\.ace\.SQL\20230403.WS23SQL1001\WS235QL1001_20230419.SQL 14

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

TRUNCATE TABLE ace.students;

[REFKAAK AR A A KA A AR A A A AR KA A A KK KA KA KKK AKFK KKK KKK

9. Since there is no copy statements in SQL, we are limited to the vendor
extensions (vendor-specific SQL).

When working with some vendors like Oracle, we can CREATE a new table from
a query on another table.

CREATE TABLE new_table
AS
(
SELECT fieldl, field2 ...
FROM old_table

)

In SQL Server, we use "INTO .

SELECT fieldl, field2 ...
INTO new_table
FROM old_table

In the example below, we push the output of the query to retrieve all
values from table "ace.students™ into "“ace.students2’.

SELECT fieldl, field2 ...
INTO new_table
FROM old_tablel
INNER|LEFT|RIGHT JOIN old_table2
ON old_tablel.common_fieldl = old_table2.common_fieldl...

A view (http://searchsglserver.techtarget.com/definition/view) is a better

option, which we will cover on the next class.
stk ko ok ok ok sk ok sk ok sk ok sk ok sk ok sk kst ok sk ok sk ok sk ks ok sk sk ok sk kst ok sk ok sk ok sk kst ok sk otk sk ok skoskok skt ko skokskok -k /

SELECT * -- 1. selecting all values
-- from "ace.students”
INTO ace.students2 -- 2. creating the new table
-- “ace.students2”
FROM ace.students; -- 3. from table "ace.students’

[REFAKAAK AR AA KKK A KA KA KA KA A A KA KA KA A KA KA A KA KK KA KK KKK KKK

https://folvera.commons.gc.cuny.edu/?p=1227
stk ko ok ok ok sk ok sk ok sk ok sk ok sk ok sk sk ok sk ok sk ok sk okskok ok sk sk ok sk kst ok sk ok sk ok sk ok stk sk okskokok sk ok skokok skt sk skokskok -k /

